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Abstract. A mathematical-physical model to describe the current response of p-type SrTiO3 ceramics in the
low-temperature regime upon dc voltage step was developed, utilizing the numerical class library DIFFPACKTM

(Numerical Objects, Norway). The current response in the time domain shows the experimentally observed Maxwell-
Wagner relaxation (space charge polarization), followed by leakage current, and, eventually, resistance degradation.
The relaxation behavior is analyzed by means of the simulation results for the spatial profiles of the electrical
potential and the respective point defects. The impact of bias voltage and grain boundaries on the relaxation time is
investigated. The simulation results are compared with experimental data.
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1. Introduction

Through the past decades, the electronic properties
of perovskite titanates were in the focus of exten-
sive research, due to their versatile suitability for tech-
nical applications, e.g. varistor, capacitor dielectrics,
PTC resistor [1]. Hereby, strontium titanate (SrTiO3)
was commonly employed as a model material for per-
ovskites, due to its well-understood defect chemistry
and conduction mechanisms [2]. In Fig. 1 (so-called
Kröger-Vink diagram [3]) the typical dependence of
the concentration of bulk defects in acceptor-doped
(p-type) SrTiO3 on equilibrium oxygen partial pressure
pO2 are displayed for both high equilibration tempera-
tures (HT) and low temperatures <700 K (LT, thick
lines). Insulating properties such as utilized for ce-
ramic multi-layer capacitors (CMC) are obtained by
an annealing step under moderately reducing atmo-
spheres, and subsequent rapid cooling to low tempera-
tures (so-called quenching). This leads to the following
relation between the concentration of charged accep-
tor [A′] (here assumed as monovalent), the twofold
ionized oxygen vacancies [V ••

O ], electrons n, and

holes p:

[A′] ≈ 2[V ••
O ] � p � n (1)

Due to the predominant impact of the ionic defects
on space charge, a Brouwer condition for bulk electro-
neutrality applies [4]: [A′] ≈ 2[V ••

O ].
At low temperatures, the oxygen vacancies V••

O are
the only mobile ionic species. Their mobility µV ••

O
is

strongly dependent on temperature T . With the V••
O

activation energy from Reference [5] and an anchor
value of µV ••

O
= 10−8 cm2

Vs at 500 K, one gets

µV ••
O

(T ) = 2.316 × 103

T/K
·exp

(
−0.86 eV

kT

)
cm2

Vs
(2)

k is the Boltzmann constant.
Even though p is lower than [V ••

O ] by many orders
of magnitude, there may arise a significant contribution
to electric conductivity from the holes, due to their
high mobility µp (approx. 0.5 cm2

Vs at 500 K [6]) with
respect to the V••

O. This leads to a mixed ionic/electronic
conductor (MIEC) [7].
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Fig. 1. Bulk point defect concentrations in p-type SrTiO3 as a func-
tion of the oxygen partial pressure pO2 during equilibration, for
both high temperatures (HT) and low temperatures after quench-
ing (LT, T < 700 K). At low temperatures and moderately large
pO2 , where the material acts as mixed ionic/electronic conductor
(MIEC), the relation n 
 p 
 [A′] ≈ 2[V ••

O ] is valid (Graph taken
from [8]).

In addition to the up to now well-understood bulk
properties [8, 9], the electrical behavior of SrTiO3

ceramics is greatly determined by the grain boundaries
(GBs). This is elucidated by Fig. 2 where the current
response of p-type SrTiO3 (here as the geometry-
independent absolute value of the complex electric con-
ductivity σ , i.e. the ratio of current response and electric
field) upon a dc voltage step is displayed for a single
crystal (subscript: sc) and both a coarse-grained (sub-
script: cg) and a fine-grained (subscript: fg) ceramic. It
is apparent that the current response for all three charac-
teristic regimes in the time domain, namely Maxwell-
Wagner relaxation (initial decay of the current at short
times) constant leakage current, and resistance degra-
dation (i.e. the pronounced increase of the leakage cur-
rent with the time) are unequivocally dependent on
the grain size, or the number of GBs in the material,
respectively.

A summary of grain boundary (GB) properties in
p-type SrTiO3 and existing models to describe the de-
fect chemical and electrical scenario at GBs will be
given in the upcoming section.

1.1. Grain Boundary Properties and Modeling

The existence of highly resistive GB layers in
p-type SrTiO3 have been postulated by impedance
spectroscopy results in the 80es of the last century
[11–15]. A Schottky model for GBs assuming addi-
tional defect states at the interface with respect to the
grain interior, that create a space-charge layer depleted
of mobile charge carriers, was brought about by Waser
[16], and Chiang and Takagi [17]. The related intrinsic
potential barrier at GBs denotes according to Schottky
theory [18, 19]:

ϕGB,0 = Q2
GB

8q0ε[A′]
(3)

where QGB is the charge density of the GB donors.
QGB can be converted into an equivalent space charge
density 
GB by taking into account the thickness of
the crystallographic mismatch zone at the GB interface
dinterf , according to:


GB = QGB

dinterf
(4)

This is in general advantageous for GB modeling
purposes, since it allows one to treat the GB states anal-
ogously to the zero-dimensional charged bulk defects.
[A′] is the concentration of charged acceptors in the
space charge depletion layer that is assumed constant
in Eq. (3). q0 is the elementary charge, ε the dielectric
constant. ε at GBs is approx. the respective bulk value
[20].

The extension of the space charge depletion layer
dGB, which exceeds dinterf by far, denotes:

dGB = QGB

q0[A′]
(5)

For the electrical characterization of SrTiO3 ceram-
ics at a simplified descriptive level, the so-called brick-
wall model, or at even less complexity, the brick-layer
model, have commonly been employed [21]. Hereby,
all grains are assumed to be of identical cubic shape
with the characteristic edge length, i.e. grain size, dgr,
and all GBs are assumed to have identical properties,
resulting in a homogeneous dGB. Bulk and GB deple-
tion layer are each assigned effective resistance and
capacitance, RB and CB for the bulk, and RGB and
CGB for the GBs. By those means, the ceramic can
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Fig. 2. Current response (here displayed as geometry—independent absolute value of complex conductivity σ ) of p-type SrTiO3 in the low-
temperature regime (T = 600 K) after a dc voltage step of 31.25 V, for different microstructures. The dc bias is large enough to exceed the
characteristic onset voltage for resistance degradation in all presented cases, thus leading to a pronounced long-term of leakage current in (a)
single crystal (sc) (b) coarse-grained ceramic (cg), and (c) fine-grained ceramic (fg). Three characteristic regimes are discernible: (I) Short-
term Maxwell-Wagner relaxation (characteristic relaxation time τr ) (II) Stationary state leakage current (III) Long-term resistance degradation
(characteristic lifetime τl where the current has reached a value that is one order of magnitude above its minimum) (Graph taken from [10]).

be modeled into an equivalent electrical circuit (see
also Section 2). This has proven to be beneficial for
separating GB and bulk related quantities from ex-
perimental data, like spectra of complex impedance
[22] or voltage-step measurements in the time domain
[23–25]. Yet, spatial variations of the electrical and
defect chemical quantities, that obviously occur within
the space charge depletion layer at GBs, are disregarded
hereby. Generally, the employment of an equivalent
electric circuit with constant elements according to the
brick-wall model implies the assumption of a linear,
time-invariant (LTI) system. This demands that the ef-
fective electric conductivity of the bulk, σB , and the
GBs, σGB, remain constant, i.e. that the material shows
ohmic behavior.

However, there is strong evidence that under suffi-
ciently large bias, the defect chemical scenario at GBs
as well as in the bulk, hence, the electrical behavior of
ceramics, is changing significantly with time, leading
to varistor effect and, eventually, resistance degrada-
tion [8]. Thus, for the latter phenomena, the assump-
tion of constant RB and RGB cannot be maintained.
Hence, their description exceeds the capability of the
brick-wall model that restricts one to the small-signal
(ohmic) regime.

Utilizing sophisticated numerical methods (finite
element (FE) and finite difference (FD) calculations),

refined models for the electrical properties of SrTiO3

ceramics to overcome the above-stated limits were
brought about:

Based on the Schottky depletion layer model, a
mathematical-physical model for the defect chemi-
cal and electrical scenario at GBs in p-type SrTiO3

in the electrostatic equilibrium state was developed,
which allows the simulation of the spatial profile of the
electrical potential and defect concentrations, thus the
determination of ϕGB,0 and dGB [26].

For the charge transport under bias, i.e. the non-
equilibrium case, a number of theoretical approaches
have come up over the past years: From the results of
the above-mentioned electrostatics model, small-signal
impedance spectroscopy simulation in the frequency
domain were performed [27], which matched excel-
lently with experimental results [28], thus confirming
the validity of the GB Schottky depletion layer model.
The influence of the geometric orientation of GBs on
the impedance spectra of p-type SrTiO3 in the small-
signal regime was investigated [29, 30]: It was shown
that even though distinct deviations of the grain shape
from the ideal brick-wall microstructure may affect the
impedance spectra both qualitatively (deviation from
the two-arc shape) and quantitatively (depression of
the GB semicircle), different effects may cancel in real
ceramics and the brick-wall model can still represent a
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good approximation in many cases. Utilizing Schottky
diffusion theory [31], analytical expressions for the dc
bias dependence of the leakage current in the course
of voltage-step experiment, and for the voltage depen-
dence of the GB potential barrier, i.e. varistor behavior,
were developed [32]. By means of a mathematical-
physical model for charge transport under large dc bias,
resistance degradation in p-type SrTiO3 was investi-
gated [33]. Other than the electrostatics model, a spa-
tial resolution of GB areas is not accomplished therein,
and short-term current behavior is not regarded. A spa-
tial resolution of the GB interface region was provided
by a model for chemical diffusion simulations through
GBs [34, 35], to study the concentration profile of
point defects at the GBs. Since linear transport theory
is applied, the model is restricted to the small-signal
regime.

1.2. Motivation

In the present work, a mathematical-physical model
for the simulation of the charge transport across GBs
in p-type SrTiO3 in the time domain for arbitrary volt-
ages with a spatial resolution of the GB areas is pro-
posed, which, to the best knowledge of the authors,
has not been brought about yet. The model will focus
on MIEC materials in the low-temperature regime, due
to the relevance of said scenario for technical applica-
tions. The simulation results are to deliver the evolution
of the spatial profiles of physical quantities such as the
electrical potential and the defect concentrations, and
the current response for all characteristic regimes in the
time domain. This should lead to a better knowledge
of the influence of the eletronic and defect chemical
scenario at GBs on the charge transport. By means of
the model, the phenomenon of Maxwell-Wagner re-
laxation (space charge polarization) will be discussed.
Long-term conductivity (leakage current) and its de-
pendence on the dc bias (varistor behavior) have been
discussed in [36]. Resistance degradation will be in the
focus of further contributions [37].

2. Mechanism of Maxwell-Wagner Relaxation

Maxwell-Wagner relaxation occurs in media that show
inhomogeneous electrical conductivity, such as p-type
SrTiO3 ceramic. Voltage-step measurements, i.e. the
recording of the current response upon a dc voltage

step, reveals a characteristic decay of the electric cur-
rent density i(t) that yields an exponential law: i(t) =
i0 · exp(− t

τr
), with the relaxation time τr . This is due

to the pile-up and the depletion of mobile charge car-
ries that arise at the interface between highly con-
ducting and lowly conducting phases, which leads to
space charge polarization. The electric field Epol that
is caused by the polarization charges does counteract
the external electric field Eext from the dc bias volt-
age UDC, thus leading to a net material field E that is
lower than Eext. In term, this reads that UDC will mainly
drop across the lowly conducting material regions. If
the resistance of the lowly conducting phase is finite,
i(t) will not drop to zero, but a constant leakage current
will settle after Maxwell-Wagner relaxation.

In Fig. 3, the Maxwell-Wagner relaxation current
for p-type SrTiO3 after a voltage step is displayed, here
again as the absolute value of σ , i.e. the ratio of i(t) and
Eext (with Eext = UDC

d , where d denotes the thickness
of the ceramic).

Taking into account the brick-wall model (see
Fig. 3(b)), neglecting the impact of electrodes [8] and
highly-conducting current paths perpendicular to the
electrodes, i.e. Rl → ∞ [28], and assuming the obvious
relations RGB � RB and CGB � CB , the current plateau
for short times is ascribed to the bulk, whereas that
for long times, i.e. the stationary state after Maxwell-
Wagner relaxation, is ascribed to the sum of bulk and
GB resistance. The current decay is due to the charging
of the GB capacitance that is characterized by τr :

τr = RB · CGB (6)

The effective electrical conductivity of bulk σB

and GB depletion layer σGB can be extracted from
the voltage-step experiment solely by geometry
parameters, namely d and dgr [5, 28].

In this contribution the mechanism of Maxwell-
Wagner relaxation will be closely investigated by
means of simulation results that are obtained from the
mathematical-physical model for charge transport in
p-type SrTiO3 ceramics. The model will be outlined in
the upcoming section.

3. Simulation Model

The geometry of the simulation model consists of a
one-dimensional longitudinal cross-section through a
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Fig. 3. (a) Typical current response (here displayed as geometry-independent absolute value of complex conductivity σ ) of a p-type (Ni-doped)
SrTiO3 ceramic, after a dc voltage step of 10 V, measured at 483 K. The dopant concentration is 1.6 × 1019 cm−3. The sample thickness is
1 mm, the average grain size dgr is 2 µm (b) Schematic of the brick-wall model for polycrystalline material (thickness d, average grain size dgr ,
GB depletion layer width dGB), and equivalent electrical circuit: each material phase (electrodes, bulk, GB depletion layers) are modeled into
a parallel circuit, consisting of resistance R and capacitance C (subscripts: el = electode, B = bulk, GB = grain boundary, l = current paths
along GBs). In the low-temperature regime, electronic inversion phenomena at GBs that may cause highly conducting current paths along GBs
do not occur, thus allowing Rl and Cl to be neglected (Graphs taken from [10]).

p-type SrTiO3 ceramic, its extensions into the other two
space dimensions are assumed to be infinite. This sim-
plification is encouraged by Hagenbeck who utilized
results from simulation of one single GB to shape the
impedance spectra of an extended ceramic that contains
a large number of GBs (see Section 1.1), and achieved
an excellent match between simulation and experiment
[28].

The material is regarded as a continuous medium
according to Maxwell’s theory. Hence, the periodical
atomic lattice structure may be neglected and the em-
ployment of macroscopic physical quantities such as
relative dielectric permittivity εr is allowed.

The model is based on the approach of point de-
fect chemistry: apart from the overall impact of the
electrodes and GBs, a statistical distribution of zero-
dimensional electronic and ionic defects is assumed to
greatly determine the material properties of the bulk,
i.e. volume effects outweigh those effects which may
arise from the presence of so-called extended defects
in the grain interior. (It should be noted nevertheless
that evidence has been found which, besides point de-
fects, supports the impact of extended defects on the
behavior of SrTiO3 single crystals [38–40]).

The model utilizes Schottky diffusion theory [18,
19, 31], i.e. particle transport in bulk and interface
regions can be described by Nernst-Planck transport

equations for the particle current density of electrons
jn , holes jp, and oxygen vacancies jV ••

O
:

jn = −Dn · ∂n

∂x
− µn · n · E (7)

jp = −Dp · ∂p

∂x
+ µp · p · E (8)

jV ••
O

= −DV ••
O

· ∂[V ••
O ]

∂x
+ µV ••

O
· [V ••

O ] · E (9)

Dn, Dp, and DV ••
O

are the diffusion coefficient of elec-
trons, holes, and V••

O, respectively, and µn is the mo-
bility of electrons. Mobility and diffusion coefficient
of the species i are coupled via Nernst-Einstein rela-
tion: µi = zi q0

kT · Di , where zi denotes the charge num-
ber of the species (zn = −1 for electrons, z p = 1
for holes, and zV ••

O
= 2 for V••

O). The formulation of
Eqs. (7)–(9) does allow local gradients of Di or µi ,
respectively, that might occur e.g. due to reduced mo-
bility of the V••

O at GBs, as it is assumed in Reference
[34].

The local change of the concentration of the mobile
charge carriers is described by continuity equations.

Due to the very short mean free path of the electronic
charge carriers with respect to e.g. classical semicon-
ductors [33], local electronic equilibrium will always
be assumed, i.e., from the local concentration of holes
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p(x), the local concentration of electrons n(x) can be
unequivocally calculated, and vice versa:

n(x) = n2
i

p(x)
⇔ p(x) = n2

i

n(x)
(10)

where ni is the intrinsic electronic charge carrier con-
centration. This allows one to restrict the model to only
one continuity equation for the electronic charge car-
riers. Usually, an equation for the majority carriers,
namely the holes, is utilized. One gets for V••

O and p:

∂[V ••
O ]

∂t
= ∂

∂x

(
DV ••

O
· ∂[V ••

O ]

∂x

)

− ∂

∂x
(µV ••

O
· [V ••

O ](x) · E(x)) + qV ••
O

(x) (11)

∂p(x)

∂t
= ∂

∂x

(
Dp · ∂p(x)

∂x

)

− ∂

∂x
(µp · p(x) · E(x)) + qp(x) (12)

qV ••
O (x) and qp(x) denote additional source terms of V••

O
and holes that describe the amount of concentration
change which is not caused by particle transport but by
e.g. internal defect chemical reactions.

For the interaction between the electrical poten-
tial ϕ and the charged defects Poisson’s equation is
employed.

ϕ = −


ε
(13)


 denotes the local space charge density that is com-
posed of the sum of the concentration of all mobile and
immobile charged species ci , weighted by zi .


(x) = q0 ·
∑

i

zi · ci (x) (14)

The ohmic current density iohmic is obtained by sum-
ming up the particle current densities according to
Eqs. (7)–(9), weighted by the individual charge of the
respective species:

iohmic = q0 · (zn jn + z p jp + zV ••
O

jV ••
O

) (15)

Eventually, the total electric current density i is ob-
tained by i = iohmic+idisp, with idisp being the dielectric

displacement current:

idisp = 1

ε

∂ E

∂t
= −1

ε

∂

∂t

∂ϕ

∂x
(16)

The scenario at the borders of the model geome-
try is determined by the choice of boundary conditions
(BCs) for the system state quantities n, p, [V ••

O ], electri-
cal potential, and partial current density jV ••

O
and jp (see

Fig. 4). The subscript anodic refers to the site of higher
electrical potential, the subscript cathodic to the site of
lower electrical potential. Two different boundary sce-
narios are considered, namely systems that are bounded
by electrodes (“closed” boundaries, see Fig. 4(a)), and
boundaries that are situated in undisturbed bulk re-
gions off the GB interfaces (“open” boundaries, see

Fig. 4. Illustration of the scenario at the borders of the model geom-
etry for the charge transport in SrTiO3 where boundary conditions
(BCs) apply for various physical quantities, i.e. electrical potential
ϕ, particle concentrations [V ••

O ], n, and p, and particle currents jV ••
O

and jp (the subscript ‘anodic’ relating to the site at higher electrical
potential, ‘cathodic’ to the site at lower electrical potential). Different
BCs emerge for (a) electrode boundaries, here assumed as completely
blocking for oxygen transfer (b) system boundaries situated in the
bulk.
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Fig. 4(b)). Whereas the further are to describe the usual
case of material embedded between two electrodes,
the latter will be employed to somewhat “extract” the
impact of GBs only.

Considering non-catalytic electrode material (e.g.
gold) [41], oxygen exchange at the system boundaries
may be neglected, due to the sluggish surface reaction
kinetics in the low-temperature regime that is regarded
here [42, 43]. This leads to vanshing jV ••

O
at the elec-

trodes, thus constant overall amount of V••
O within the

material. This is described by Neumann BCs for jV ••
O

.
The electrodes are modeled as flat-band electrodes,

i.e. an initial band-bending at the electrodes in the
electrostatic equilibrium case is neglected. The elec-
trochemical potential of the electronic charge carriers
at the electrode is assumed to be constant over time,
thus leading to constant particle concentrations n0 and
p0 at the boundaries, i.e. Dirichlet BCs. n0 and p0 are
equal to the bulk concentration of the electrons and
holes at electrostatic equilibrium.

Dirichlet BCs for the electronic charge carriers will
as well apply for “open”, or bulk boundaries, far off the
GB interfaces. Furthermore, since in contrast to elec-
trode boundaries jV ••

O
will not be hampered by bulk

boundaries, Dirichlet BCs, i.e. constant equilibrium
concentration [V ••

O ]0, rather than Neumann BCs, will
be chosen in the case of bulk boundaries.

Another set of Dirichlet BCs is employed for the
electrical potential: the difference between the fixed
potential values at the anode and at the cathode denotes
the dc bias voltage UDC.

Energy levels following the band diagram are as-
signed to the point defects for describing the defect
chemical reactions in the material (acceptor ionization,
GB charge trapping) according to Fermi-Dirac statis-
tics [44–46]. All point defects are modeled as spatial
profiles of particle volume concentrations.

The GB donor states are assumed as additional
point defects whose occurrence be restricted to the GB
mismatch zone. Browning’s suggestion of “shallow”
donors with an energy level slightly below the conduc-
tion band similar to the bulk V••

O is embodied [47].
Inversion layers at GBs [28] that might lead to short-

circuit current paths between the electrodes (see Fig. 3)
are neglected.

The start-up values for the simulation under applied
bias, that comprise the bulk equilibrium concentrations
which are employed as Dirichlet BCs, are obtained
by an initial electrostatics simulation according to the
simulation algorithm of Hagenbeck [26].

A spatial resolution is obtained by laying an adaptive
finite element mesh upon the model geometry.

The model equations are solved by employing rou-
tines from the numerical class library DIFFPACKTM

(Numerical Objects, Norway) [48, 49].

4. Simulation Results

In the following, simulation results are discussed for the
case that a voltage-step is applied to a bicrystal model
geometry of p-type SrTiO3 in the quenched mode after
cooling from moderately reducing atmosphere.

For all simulations, the following input parameters
apply: The length of the model geometry is d = 1 µm.
For the GB interface, an extension dinterf = 1 nm is
assumed [23]. GB diffusion coefficient and mobility
are of the respective bulk values. The GB donor state
density is 8 × 1020 cm−3, which is equivalent to a GB
charge density of QGB = 1.28×10−5 C

cm2 . The acceptor
concentration [A′] amounts 2 × 1019 cm−3. For the sake
of simplicity, the acceptor is regarded as “shallow”,
with an energy level close to the valence band that
leads to completely ionized acceptor states. The rel-
ative dielectric permittivity εr is 150, at a tempera-
ture T = 500 K. According to Eq. (3), utilizing Eq. (4),
this leads to an equilibrium GB potential barrier heigth
ϕGB,0 ≈ 0.5 eV.

First, for electrode (“closed”) boundaries, a gen-
eral simulation is performed, which provides an
overview of all characteristic regimes of the current
response in the time domain. Moreover, by means
of the evolution of the related spatial profiles of dis-
tinct physical quantities until the steady state, the
mechanism of Maxwell-Wagner relaxation is inves-
tigated. Second, by simulation sequences with bulk
(“open”) boundaries which are employed to exclude
the influence of the electrodes, the sole impact of
the external bias and the grain size on Maxwell-
Wagner relaxation are investigated in detail. Eventu-
ally, simulation results are compared with experimental
data.

4.1. Current Response

In Fig. 5 the simulated current response i(t) upon a dc
bias voltage step of UDC = 0.47 V at t = 0 with
electrode (“closed”) boundaries is displayed. Three
distinguished regimes are discernible:
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Fig. 5. Simulated current response and absolute value of complex
conductivity σ of a p-type SrTiO3 bicrystal model structure (acceptor
concentration: 2 × 1019 cm−3, GB donor charge density: QGB =
1.28 × 10−5 C

cm2 ) in the low-temperature regime (T = 500 K) after
a dc voltage step of UDC = 0.47 V, exceeding the onset voltage
for resistance degradation, thus leading to a pronounced increase
of leakage current after Maxwell-Wagner relaxation and stationary
state.

1. Maxwell-Wagner relaxation, i.e. the decay of i(t)
from a bulk-determined start-up value with the
relaxation time τr .

2. A constant leakage current that is determined by the
electronic conductivity in the GB depletion layer
[36].

3. Resistance degradation, i.e. the strong increase of
i(t) at advanced time with the characteristic lifetime
τl [37].

This qualitatively correlates well with the experi-
mental results for p-type SrTiO3 ceramics displayed in
Fig. 2.

As stated earlier, it is the phenomenon of Maxwell-
Wagner relaxation that will be in the focus of this
contribution: Based on the simulation results for the
temporal evolution of the spatial profile of the defect
concentrations, electrical potential, and space charge
density, that each refer to the Maxwell-Wagner regime
in Fig. 5, the underlying relaxation mechanism will be
investigated.

4.2. Evolution of the Spatial Profile
of the Oxygen Vacancies

Simulation results for the overall shift of [V ••
O ] with

time upon a dc voltage step are presented in Fig. 6(a),
whereas a detailled “zoom” into the GB area is pro-

vided by Fig. 6(b). The latter reveals a noticeable shift
of the V••

O into and from the space charge depletion
layer that unequivocally form at the GBs. This local
accumulation/depletion effect supports the general as-
sumption of a blocking character of the GBs for V••

O
[33, 34].

The shift of the V••
O at the GBs under dc bias repre-

sents the mechanism of space charge polarization, i.e.
Maxwell-Wagner relaxation: According to Eq. (1), the
V••

O are the only mobile charge carriers that significantly
influence the space charge. The charge shift between
the electrodes and adjacent GBs (or between neighbor-
ing GBs when a polycrystal is considered) that is ac-
companied by V••

O migration causes a de-electrifying
polarization field that weakens the external electric
field which is built up by UDC. As a consequence, the
gradient of the electrical potential in the bulk areas is
diminishing in the course of V••

O redistribution (see also
Fig. 6(c)). This leads to the decay of i(t). Furthermore,
due to the blocking character of the electrodes for ionic
transport, V••

O are neither allowed to enter nor to leave
the material. As a result, one obtains classical Debye-
Hückel polarization [50]: an accumulation of V••

O at the
cathode is accompanied by a depletion of the V••

O at the
anode (see Fig. 6(a)).

It is worth mentioning that whereas the V••
O profile at

the GB has reached its steady state after relatively short
times (i.e. at the end of Maxwell-Wagner relaxation),
the overall redistribution of the V••

O between the system
boundaries, i.e. the electrodes, has not been completed
at this juncture, but goes on in the course of resis-
tance degradation. The depletion of the V••

O at the cath-
ode generally gives way for an additional space charge
layer that is formed by the left-behind negative acceptor
charges. In term, a pronounced positive space charge
layer is formed at the anode by the accumulation of
surplus V••

O.
Altogether, it is evident that a significant amount of

charge can be stored both at the electrodes and at the
GBs. This is hinted at by the capacitances Cel and CGB

in Fig. 6(a).

4.3. Evolution of the Spatial Profile
of the Electrical Potential

Simulation results of the time dependence of the po-
tential drop over the model geometry for p-type SrTiO3

are presented in Fig. 6(c): Immediately after applying
the dc voltage step, the voltage drops linearly from the
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Fig. 6. Simulated evolution of the spatial profiles of (a) global oxygen vacancy concentration (b) GB oxygen vacancy concentration (c) electrical
potential and (d) space charge density for a p-type SrTiO3 bicrystal model structure in the low-temperature regime after a dc voltage step of
0.47 V, from t = 0 to 30 ms (T = 500 K, acceptor concentration: 2 × 1019 cm−3, GB donor charge density: QGB = 1.28 × 10−5 C

cm2 ).

anode to the cathode over the bulk areas of the model
geometry. At the GB, the resulting electrical potential
is emerging from the superposition of the impact of the
external bias and the intrinsic potential barrier over the
Schottky depletion layer (see Eq. (3)).

In the course of Maxwell-Wagner relaxation the po-
tential slope over the charge-free bulk regions is de-
caying with the shift of the V••

O at the GBs, i.e. space
charge polarization, due to the de-electrifying impact of
the thus built-up polarization field (see also Fig. 6(d)).

After the leveling of the potential gradient in the
bulk, i.e. after the diminishing of the electric field in
the bulk, UDC mainly drops at the GB and, to a smaller
amount, at the electrodes. By then, redistribution of the

V••
O at the GB interface, i.e. space charge polarization,

has been completed and a stationary leakage current
has settled.

4.4. Evolution of the Spatial Profile of the Space
Charge Density

Simulation results for the evolution of the space charge
at the GB are displayed in Fig. 6(d): One clearly ob-
serves the large positive GB charge that is the cause of
the negative GB space charge depletion layer.

The V••
O redistribution at the GB interface under

dc bias causes a shift of the depletion layer from the
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anode to the cathode while—for not too large dc bias—
its extension dGB remains virtually unchanged with
respect to the electrostatic scenario [36]. Taking into
account Eq. (6) for the relaxation time τr and consid-
ering the dependence of the GB capacitance CGB on
dGB : CGB ∝ 1

dGB
, it is apparent that τr will be as well

independent of UDC (see Section 4.6).

4.5. Comparison with “Open” Boundary Model

In contrast to real ceramics where a large number of
GBs outweigh the impact of electrodes on material be-
havior, the influence of electrodes may not be neglected
for a bicrystal. Herein, the relaxation time will be af-
fected by the electrode contribution to the overall ca-
pacitance. In order to “extract” the sole impact of GBs,
“open” boundaries will be employed (see Fig. 4(b)).
This will be legitimated for short simulation times, yet
not for the long-term behavior: In the case of electrode
boundaries jV ••

O
will unequivocally drop to zero in the

course of the overall V••
O redistribution. However, in

the case of bulk boundaries, due to their non-blocking
character for ionic transport, this will never be accom-
plished. Hence, by the choice of bulk boundaries, leak-
age current as well as resistance degradation cannot be
described accurately.

The simulation results of the current response
for both electrode and bulk boundaries with other-
wise unchanged input parameters are displayed in
Fig. 7.

Whereas the initial current remains unchanged for
“open” boundaries due to virtually unchanged bulk
conductivity, τr increases with respect to “closed”
boundaries. This is due to the increase of the effective
capacitance of the model geometry CGB,eff that arises
from the “removal” of the electrode capacitances Cel

from the equivalent serial electric circuit (see Fig. 6(a))
where only CGB remains.

4.6. Variation of dc Bias Voltage and Number
of GBs (Grain Size)

Based on a simulation model with bulk boundaries,
the impact of the value of the dc voltage step UDC

and of different grain sizes dgr on the current re-
sponse during Maxwell-Wagner relaxation are inves-
tigated: For the variation of dgr, an altering number
of GBs nGB with identical properties will be embed-

Fig. 7. Comparison of the simulation results of the current response
for a p-type SrTiO3 bicrystal model structure in the low-temperature
regime after a dc voltage step of 0.47 V for electrode boundaries
(relaxation time τr,closed) and “open” boundaries (relaxation time
τr,open) (T = 500 K, acceptor concentration: 2 × 1019 cm−3, GB
donor charge density: QGB = 1.28 × 10−5 C

cm2 ).

ded into the model geometry, thus reducing dgr with
increased nGB.

The simulation results for i(t) are displayed in
Fig. 8.

As it was expected, τr does not vary with different
values of UDC (see Fig. 8(a)). Moreover, the initial cur-
rent increases with increasing UDC, revealing ohmic
behavior for the regarded voltages.

In term, Fig. 8(b) shows the decrease of τr with
increasing nGB, i.e. decreasing dgr. Again regarding
a serial electric circuit, the effective capacitance with
respect to nGB denotes:

CGB,eff (nGB) = CGB

nGB
(17)

with CGB,eff (2) = CGB
2 and CGB,eff (3) = CGB

3 . Since the
total bulk resistance is only moderately increased by
embedding two further GBs into the model geometry,
we get for the ratio of τr from one to three GBs: τr,1GB ≈
2 · τ2GB ≈ 3 · τ3GB, which is in good accordance with
Eq. (6).

Eventually, it is worth noting that the charge-
trapping at GBs turned out to be negligible for the cases
presented here. Nor is the ionization of acceptors any
prerequisite for the discussed phenomena.
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Fig. 8. Comparison of the simulation results of the current response for a p-type SrTiO3 model structure in the low-temperature regime after a
dc voltage step UDC at (a) constant number of GBs (nGB = 1) and different biases (0.22 V, 0.47 V, 0.68 V) (b) constant bias (UDC = 0.47 V) and
different nGB (1 to 3) (i.e. different grain size). Simulation parameters: T = 500 K, acceptor concentration: 2 × 1019 cm−3, GB donor charge
density: QGB = 1.28 × 10−5 C

cm2 .

4.7. Extrapolation Towards Larger
Geometries—Comparison with Experiment

The simulation results for the bicrystal model ge-
ometry with bulk boundaries yield a relaxation time
τr,1 = 10−2 s (see Fig. 8(a)). For comparison with a
real ceramic, the obtained results will be “fitted” to the
voltage-step experiment displayed in Fig. 3(a):

In a first step, the model geometry is extrapo-
lated to the thickness d2 and the average grain size
dgr,2, or the number of GBs nGB,2, of the real ce-
ramic, and the simulated bulk conductivity σB,1 is ad-
justed to the temperature of the experiment T2. Hereby,
τr,2 is obtained. This procedure is described in the
Appendix. In a second step, the possibly different pro-
cessing conditions of the real ceramic (here: Ni-doped
SrTiO3; sintering conditions: 1613 K, O2, 6 h; an-
nealing conditions: 973 K, pO2 = 105 Pa, 8 h; Ni
concentration: 1.6 × 1019 cm−3) with respect to the
assumptions for the simulation model, that might lead
to different defect chemical scenario in the bulk, and
hence to different σ for the real ceramic and the
model geometry at T2, will be considered. The thus
obtained relaxation time τ ∗

r,2 is compared with the ex-
perimentally obtained relaxation time τr,exp = 0.04 s of
Fig. 3(a).

From e.g. the simulation results for UDC = 0.47 V
in Fig. 8(a), with the related short-term current density

i = 1.5 × 10−4 A
cm2 and the extension of the model

geometry d1 = 1µm, one obtains from Eq. (A4):
σB,1 = 3.19 × 10−8 S

cm . With the bulk value [V ••
O ] =

1 × 1019 cm−3 (see Fig. 6(a)) and µV ••
O

at T1 = 500 K,
a vanishingly small hole contribution to σB,1 arises
from Eq. (A5). This allows one at first approximation
to neglect holes for determinining σB,2 at T2 = 483 K.

From Eqs. (2) and (A5), we obtain σB,2 = 1.64 ×
10−8 S

cm .
With d2 = 1 mm, dgr,2 = 2 µm, and the simple for-

mula nGB = d
dgr

, we get nGB,2 = 500, whereas the GB
number of our bicrystal model geometry nGB,1 is, of
course, one.

Inserting the above-accumulated data into Eq. (A3),
we eventually obtain τr,2 = 0.04 s.

From Fig. 3(a), bulk conductivity of the ceramic
sample immediately reads σB,exp = 10−8 S

cm .
Since σB,2 turns out larger than σB,exp by a fac-

tor of approx. 1.64, we must multiply τr,2 by this
factor, to regard aforesaid possibly different process-
ing conditions. The hereby obtained value τ ∗

r,2 =
0.066 s matches well with the value τr,exp from the
experiment. With respect to the simplicity of the em-
ployed model geometry, this hints at a rather ho-
mogeneous distribution of GB properties in p-type
SrTiO3 that has been observed by Rodewald by mi-
croelectrode impedance measurements on single GBs
[24, 51].
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5. Conclusions

1. A mathematical-physical model for charge trans-
port processes in p-type SrTiO3 polycrystals under
dc load has been developed. The model describes all
characteristic phenomena of the system evolution in
the time domain, i.e. Maxwell-Wagner relaxation,
stationary leakage current, and resistance degrada-
tion. It provides a spatial resolution of all relevant
physical quantities such as defect concentrations and
electrical potential, which allows investigation of
the GB scenario in detail. The model is not lim-
ited to the small-signal regime but remains valid for
arbitrarily large bias voltages.

2. By means of the simulation model, the phenomenon
of Maxwell-Wagner relaxation was examined. The
cause of space charge polarization is the V••

O redis-
tribution at the GBs under dc load. Both the impact
of the overall GB capacitance (i.e. the number of
GBs in the ceramics or the grain size, respectively)
on Maxwell-Wagner relaxation time τr , and the in-
dependence of τr of the dc bias (for not too large
biases) were confirmed. Extrapolation of the results
for the model geometry and comparison with real
extended ceramics show a good agreement between
simulation and experiment.

3. The extension of the proposed simulation model to-
wards 2-dimensional and eventually 3-dimensional
geometries will gave way for a detailed investigation
of the field and current distribution, and the related
material stress within p-type SrTiO3 polycrystals.
This may also represent a vital step towards spatially
resolved transient simulation of complete ceramic
devices, which would generally support ceramic
engineering.

Appendix: Extrapolation of Simulation Results to
Extended Structures and Different Temperatures

Some formulae for fitting the simulation results for the
bicrystal model geometry of p-type SrTiO3 to extended
structures and different temperatures are derived in this
section.

Equation (6) for τr may be rewritten, regarding the
brick-wall model (see Fig. 3(b)):

τr = RB · CGB = dB,tot

σB · AB,tot
· ε · AGB,tot

dGB,tot
(A1)

AB,tot and AGB,tot denote the effective area of the vol-
ume portion of the bulk and the GBs parallel to the elec-
trodes, whereas dB,tot and dGB,tot denote the effective
length of either material phase between the electrodes,
respectively. The following obvious approximations
are commonly employed:
� AB,tot and AGB,tot are approximately of the electrode

area A.
� dB,tot is approximately of the total probe thickness d.
� dGB,tot equals nGB ·dGB, i.e. the number of GBs along

a path from anode to cathode perpendicular to the
electrodes, multiplied with the length of the Schottky
depletion layer at one GB.
Then, Eq. (A1) simplifies to:

τr ≈ d

σB
· ε

nGB · dGB
(A2)

With the simplified formulation of the Curie-Weiss
law for the dielectric constant of SrTiO3 in the para-
electric phase [52]: ε ∝ 1

T , one gets for the ratio
of Maxwell-Wagner relaxation time for material with
identical processing conditions, i.e. same defect chem-
ical scenario, but with different d, dgr (thus different
nGB), and T (thus different σB), the respective sub-
scripts 1 and 2 denoting the two different scenarios to
be compared:

τ1

τ2
≈ d1

d2
· T2

T1
· nGB,2

nGB,1
· σB,2

σB,1
(A3)

σB,1 emerges from the simulation results, given i for
short times and the external electric field Eext that is
obtained by dividing UDC by d:

σB = i

Eext
= i · d

UDC
(A4)

In general, σB denotes for MIEC p-type SrTiO3:

σB = q0 · (2 · µV ••
O

· [V ••
O ] + µp · p) (A5)

The temperature dependence of σB arises from µV ••
O

according to Eq. (2), and p, whereas both [V ••
O ] (that

will yield the Brouwer condition arising from Eq. (1)
if completely ionized acceptor is assumed) and µp ≈
0.5 cm2

Vs may be regarded as temperature-independent
in the low-temperature regime.

With [V ••
O ], µV ••

O
, and µp known, p at T1 can be

determined from σB,1 via Eq. (A5).
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According to Fermi-Dirac statstics of semiconduc-
tor physics, p denotes:

p(T ) = NV · exp

(
−Wp

kT

)
(A6)

where NV is the effective density of states of the valence
band and Wp the activation energy for the holes from
the valence band.

Wp can be determined from Eq. (A6), when NV

is known:

Wp = −kT · ln

(
p

NV

)
(A7)

Assuming temperature-independent NV and Wp,
one gets for the ratio of p at two different temperatures
T1 and T2:

p(T1)

p(T2)
= exp

(
−Wp

k
·
(

1

T1
− 1

T2

))
(A8)

From the thus obtained values of µV ••
O

and p at T2,
σB,2 can be calculated via Eq. (A5).
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